

Medical Open Network for Al

14/06/2021 - Thibault Pelletier

Contributors

In addition to Kitware, Project MONAI is supported by NVIDIA, King's College London, Chinese Academy of Sciences, DKFZ German Cancer Research Center, Stanford University, MGH & BWH Center for Clinical Data Science, and the Technical University of Munich.

Purpose

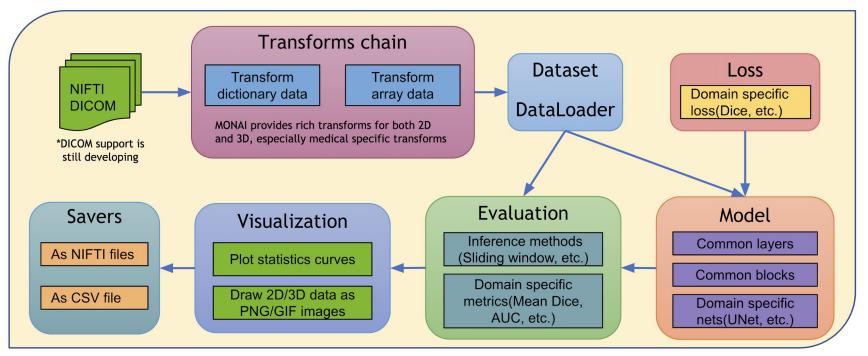
MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:

- Developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- Creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- Providing researchers with the optimized and standardized way to create and evaluate deep learning models.

Key features

- Flexible pre-processing for multi-dimensional medical imaging data;
- Compositional & portable APIs for ease of integration in existing workflows;
- Domain-specific implementations for networks, losses, evaluation metrics and more;
- Customizable design for varying user expertise;
- Multi-GPU data parallelism support.

Architecture



Research - implementation of recently published research in medical imaging, such as COVID-19 models, automatic model paralle						matic model parallelism
	Model Parallel		COVID-19 CT Image Segmentation		Other Topics	

Examples & Application - show highlight features and integration with other packages							
Segmentation	Classification	Perf Acceleration	Modules Demo	Public Datasets			

Workflows - engines, metrics and event-handlers that are compatible with PyTorch ignite APIs, support AMP and distributed data parallel

Engines		Event-Hand	llers	Metrics
SupervisedTrainer GANTrainer SupervisedEvaluator EnsembleEvaluator	CheckpointLoader ValidationHandler ClassificationSave	MetricLogger	TensorBoardHandlers SegmentationSaver LrScheduleHandler	MeanDice ROCAUC ConfusionMatrix

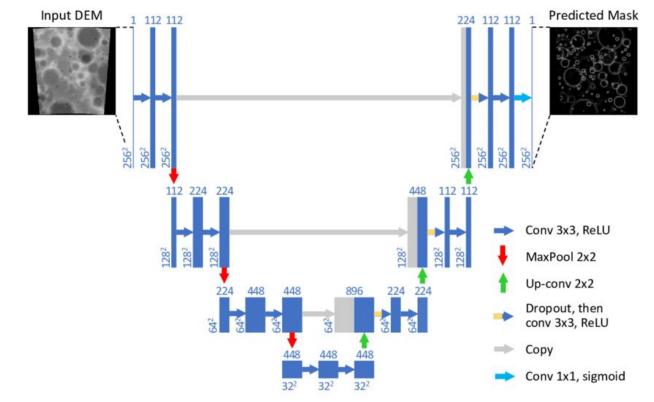
Components - independent modules that can be integrated into PyTorch programs directly

Data CacheDataset SmartCacheDataset PersistentDataset	Savers NiftiSaver PNGSaver CSVSaver	Losses DiceLoss + extensions FocalLoss TverskyLoss	Networks UNet / DynUNet / VNet DenseNet / SENets SegResNet / AHNet	Transforms Spatial Transforms Intensity Transforms IO Transforms	
ImdbDataset ArrayDataset GridDataset	Inferers SimpleInferer	Visualize Plot 3D / 2D images	Common Blocks Common Layers	Utility Transforms Post Transforms	
PatchDataset Image readers Cross validation API	SlidingWindowInferer GradCam feature map Optimizers Novograd, Layer wise LR		MeanDice Confusion matrixMetricsSurface distance Hausdorff distance ROCAUC		

Medical specific transforms

- LoadImage: Load medical specific formats file from provided path
- Spacing: Resample input image into the specified pixdim
- Orientation: Change the image's orientation into the specified axcodes
- RandGaussianNoise: Perturb image intensities by adding statistical noises
- NormalizeIntensity: Intensity Normalization based on mean and standard deviation
- Affine: Transform image based on the affine parameters
- Rand2DElastic: Random elastic deformation and affine in 2D
- Rand3DElastic: Random elastic deformation and affine in 3D

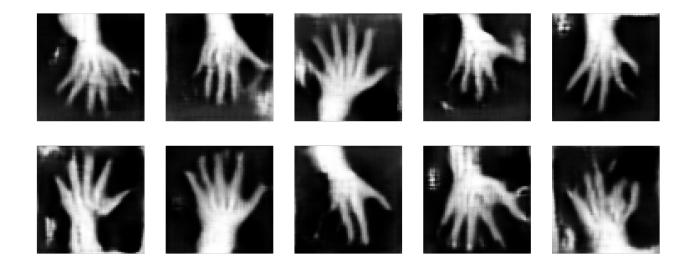
Models : UNET (1D, 2D, 3D)



Models : UNET (Code usage)

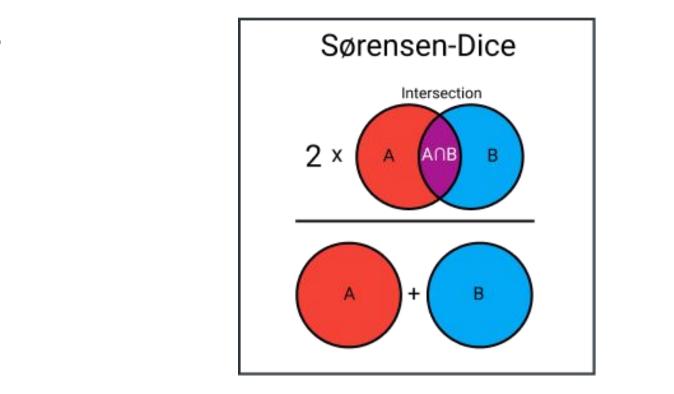
device = torch.device("cuda:0") model = UNet(dimensions=3, in_channels=1, out_channels=2, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, norm=Norm.BATCH,).to(device)

Models : Generator / Discriminator



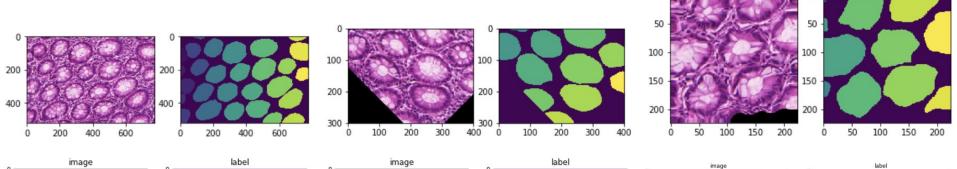
https://github.com/Project-MONAI/tutorials/blob/master/modules/mednist_GAN_tutorial.ipynb

Loss functions : DiceLoss, FocalLoss, TverskyLoss

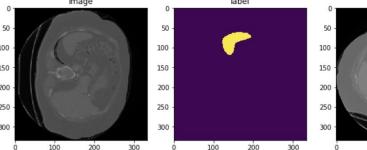


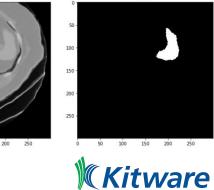
https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Data augmentation - 2D and 3D transforms

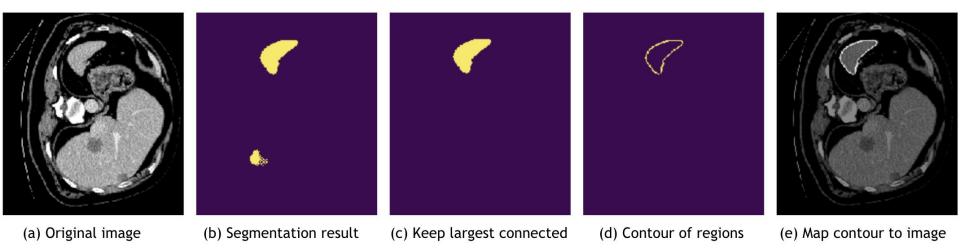


Ó

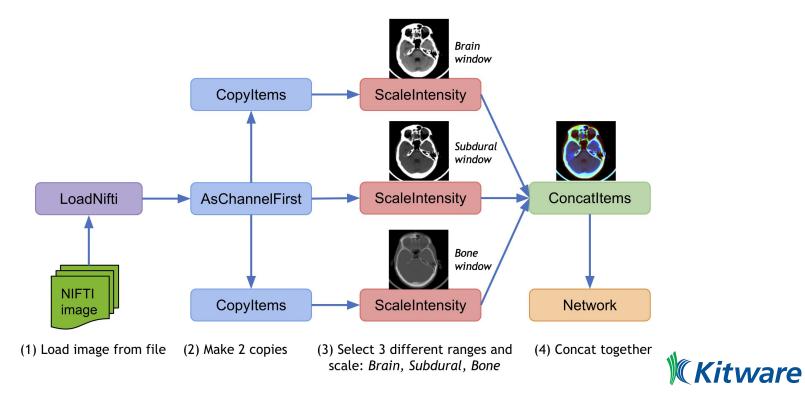




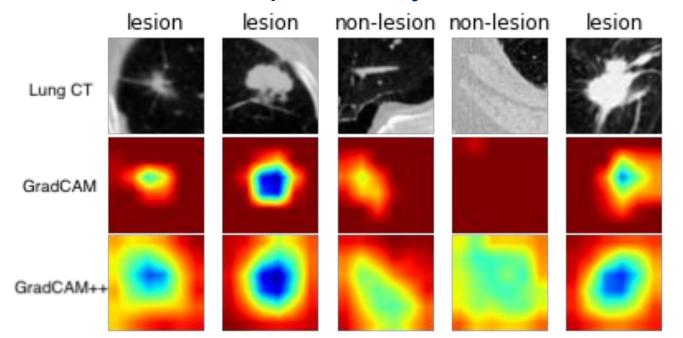
Post processing



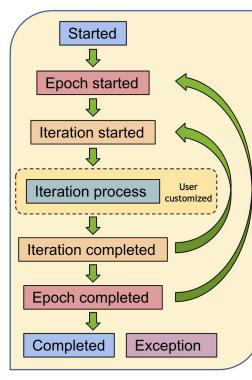
Multiple transform chains



Visualisation and interpretability



Workflows



Handlers	Started	Iteration completed	Epoch completed	Completed
Post Transforms		•		
MeanDice(metric)		•	•	
ROCAUC(metric)		•	•	
CheckpointLoader	•			
CheckpointSaver		•	•	•
ClassificationSaver		•		•
LrScheduleHandler		•	•	
SegmentationSaver		•		
StatsHandler		•	•	
TensorBoardHandler		•	•	
ValidationHandler		•	•	

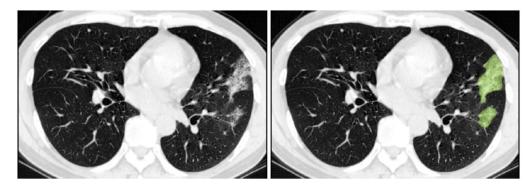
Research contributions

COPLE-Net for COVID-19 Pneumonia Lesion Segmentation

A reimplementation of the COPLE-Net originally proposed by:

G. Wang, X. Liu, C. Li, Z. Xu, J. Ruan, H. Zhu, T. Meng, K. Li, N. Huang, S. Zhang. (2020) "A Noise-robust Framework for

Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images." IEEE Transactions on Medical Imaging. 2020. DOI: 10.1109/TMI.2020.3000314

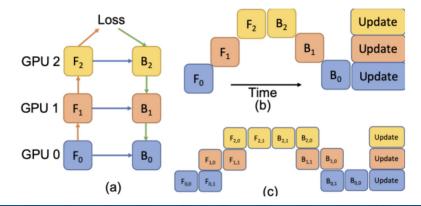


Research contributions

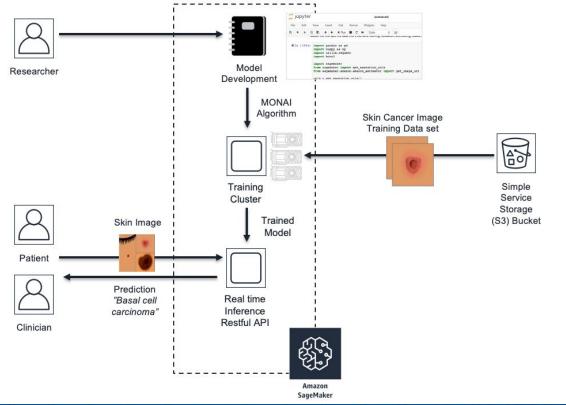
LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

A reimplementation of the LAMP system originally proposed by:

Wentao Zhu, Can Zhao, Wenqi Li, Holger Roth, Ziyue Xu, and Daguang Xu (2020) "LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation." MICCAI 2020 (Early Accept, paper link: https://arxiv.org/abs/2006.12575)

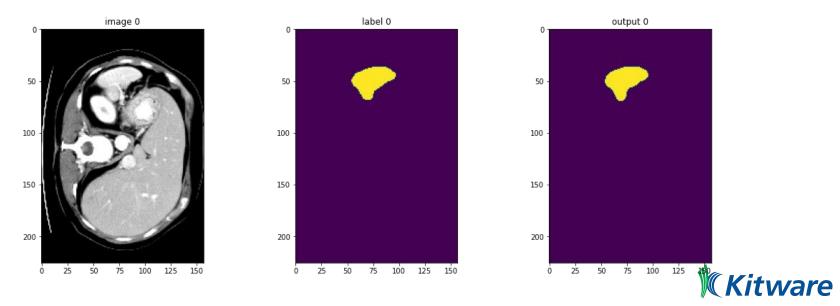


AWS SageMaker integration



Tutorials

https://github.com/Project-MONAI/tutorials/blob/master/3d_segmentation/spleen_s egmentation_3d.ipynb



Links

- Website: https://monai.io/
- API documentation: https://docs.monai.io
- Code: https://github.com/Project-MONAI/MONAI
- Project tracker: https://github.com/Project-MONAI/MONAI/projects
- Issue tracker: https://github.com/Project-MONAI/MONAI/issues
- Wiki: https://github.com/Project-MONAI/MONAI/wiki
- Test status: https://github.com/Project-MONAI/MONAI/actions
- Semantic segmentation data: http://medicaldecathlon.com/
- AWS Tutorial:

https://aws.amazon.com/fr/blogs/industries/build-a-medical-image-analysis-pipelineon-amazon-sagemaker-using-the-monai-framework/

Questions ?

