# Machine learning overview

14/06/2021 - Thibault Pelletier



# Overview

- Definition
- Learning from Data: Problem Setup
- Features
- Type of machine learning (non exhaustive)
- Classification / Regression
- Supervised / Unsupervised
- Classical / Deep learning
- Deep learning networks
- Metrics
- Generalisation and Bias
- Examples
- How to get started?



# Definition

• Wikipedia :

Automatically make predictions about new data based on information distilled from "training experiences".



### Learning from Data: Problem Setup

1D

2D

3D



### Features

Raw Data



- Raw **data** is often difficult to interpret / separate.
- Transform data into a "feature vector".
  - Sometimes hand-crafted
  - Often learned

#### **Feature Representations**



A good "feature representation" is the key to good results.



- Regression
- Clustering

### Type of machine learning (non exhaustive)





### Supervised Classification

- Labels are known
- Task is to find a decision boundary between data points
  - Often this is a hyperplane in a feature space (which in 2D is a line)
- Often formulated as binary classification.
  - Some algorithms support multiclass directly
  - Multiple binary classifiers can be converted to multi-class classifiers
    - One-vs-Rest O(N)
    - One-vs-One O(N^2)

Visualization of the Perceptron Algorithm



### Supervised Regression

- Labels are known
- Task is to fit a curve to predict a (usually continuous) quantity.
- Generally used when interpolation between values is important.

REGRESSION



#### PREDICT TRAFFIC JAMS



#### Visualization of the Linear Regression



8

# Supervised / Unsupervised

- Supervised learning
  - Use input data along "labeled" data
  - Allows you to collect or produce a data output given the information it has learned
  - Usually simple to put in place but harder to collect data
  - Examples include regression and classification
- Unsupervised learning
  - Uses input data only
  - Helps you to finds all kind of unknown patterns in data
  - Usually simple to acquire data but harder to exploit
  - Examples include clustering and association



### Deep learning / Classical machine learning

#### • Deep learning

- Best-in-class performance
- Scales effectively with data
- No need for feature engineering
- Adaptable and transferable

#### • Classical machine learning

- Works better on small data
- Financially and computationally cheap
- Easier to interpret



#### Anatomy of a Deep Network



https://towardsdatascience.com/how-to-initialize-a-neural-network-27564cfb5ffc https://360digitmg.com/activation-functions-neural-networks **Kitware** 

### Deep Networks Learn Good Feature Representations



### Deep network vs traditional network





#### Metrics : Precision and Recall (PR) and ROC Curves



### **Metrics : Binary Classification Confusion**

|                     |                                    | True con                                                                                                                                                        |                                                                                                                                                   |                                                                                                      |                           |                                                     |  |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------|--|
|                     | Total population                   | Condition positive                                                                                                                                              | Condition negative                                                                                                                                | Prevalence<br>= $\Sigma$ Condition positive<br>Σ Total population                                    |                           |                                                     |  |
| Predicted condition | Predicted<br>condition<br>positive | True positive                                                                                                                                                   | False positive,<br>Type I error                                                                                                                   | Positive predictive value (PPV),<br>Precision =<br>Σ True positive<br>Σ Predicted condition positive |                           |                                                     |  |
|                     | Predicted<br>condition<br>negative | False negative,<br>Type II error                                                                                                                                | True negative                                                                                                                                     | False omission rate (FOR) =<br>$\Sigma$ False negative<br>$\Sigma$ Predicted condition negative      |                           |                                                     |  |
|                     |                                    | True positive rate (TPR), Recall,<br>Sensitivity, probability of detection,<br>Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | False positive rate (FPR), Fall-out,<br>probability of false alarm<br>$= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ | Positive likelihood ratio (LR+)<br>= $\frac{TPR}{FPR}$                                               |                           |                                                     |  |
|                     |                                    | False negative rate (FNR), Miss rate<br>= $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$                                             | Specificity (SPC), Selectivity, True<br>negative rate (TNR)<br>= $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$         | Negative likelihood ratio (LR-)<br>= <u>FNR</u><br>TNR                                               | $(DOR) = \frac{LR+}{LR-}$ | 2 · <u>Precision · Recall</u><br>Precision + Recall |  |





https://en.wikipedia.org/wiki/Confusion matrix

### **Evaluation : Bias / Variance tradeoff**





https://www.researchgate.net/figure/Bias-variance-trade-off-in-machine-learning-This-figure-illustrates-the-trade-off\_fig2\_335604816

### Data bias

| Gender<br>Classifier | Darker<br>Male | Darker<br>Female | Lighter<br>Male | Lighter<br>Female | Largest<br>Gap |
|----------------------|----------------|------------------|-----------------|-------------------|----------------|
| Microsoft            | 94.0%          | 79.2%            | 100%            | 98.3%             | 20.8%          |
| FACE++               | 99.3%          | 65.5%            | 99.2%           | 94.0%             | 33.8%          |
| IBM                  | 88.0%          | 65.3%            | 99.7%           | 92.9%             | 34.4%          |





https://broutonlab.com/blog/ai-bias-solved-with-synthetic-data-generation

#### Example of classical machine learning in cancer detection

| Publication                 | Method | Cancer type             | No of<br>patients | Type of data                 | Accuracy    | Validation<br>method              | Important<br>features                                                        |
|-----------------------------|--------|-------------------------|-------------------|------------------------------|-------------|-----------------------------------|------------------------------------------------------------------------------|
| Ayer T et al. [19]          | ANN    | Breast cancer           | 62,219            | Mammographic,<br>demographic | AUC = 0.965 | 10-fold cross validation          | Age,<br>mammography<br>findings                                              |
| Waddell M et al.<br>[44]    | SVM    | Multiple myeloma        | 80                | SNPs                         | 71%         | Leave-one-out<br>cross validation | snp739514,<br>snp521522,<br>snp994532                                        |
| Listgarten J et al.<br>[45] | SVM    | Breast cancer           | 174               | SNPs                         | 69%         | 20-fold cross validation          | snpCY11B2 (+)<br>4536 T/C<br>snpCYP1B1 (+)<br>4328 C/G                       |
| Stajadinovic et<br>al. [46] | BN     | Colon<br>carcinomatosis | 53                | Clinical, pathologic         | AUC = 0.71  | Cross-validatio<br>n              | Primary tumor<br>histology, nodal<br>staging, extent of<br>peritoneal cancer |

https://www.sciencedirect.com/science/article/pii/S2001037014000464

#### Example : Breast cancer detection

- 36 discrete features
  - Age group, hormone therapy, personal history of breast cancer, family history of breast cancer, breast density, etc.
- Dedicated model
  - 3 layer feed-forward neural network
  - 36 inputs (features), 1000 hidden layer, 1 output (breast cancer probability)
- Radiologist level of results



### Deep learning algorithm example

• UNet based aortic stents in single uncontrasted X-ray image





https://www.sciencedirect.com/science/article/pii/S093938891830120X

### Deep learning algorithm example

• Investigations on Robustness of Deep Learning in Limited Angle Tomography



https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2018/Huang18-SIO.pdf

### Deep learning algorithm example

• Example of brain and cardiac MRI image registration with Voxelmorph





https://iopscience.iop.org/article/10.1088/2516-1091/abd37c

### How to get started ?







# Questions ?

