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Definition
● Wikipedia : 

Automatically make predictions about new data based on information distilled 
from “training experiences”.



Learning from Data: Problem Setup

Data (x)
● 1/2/3D-Signals
● Sequences
● Irregular (e.g. graphs)

Labels (y)
● Categorical / Continuous

Supervised
● Learn: predict(x) = ŷ 
● Optimize: loss(y, ŷ)

Species

1D

2D Age

Word

3D

Tumor 0/1



Feature Representations

Features
Labels

● Transform features into 
labels to perform task:

○ Classification
○ Matching
○ Regression
○ Clustering

A good “feature representation”
 is the key to good results.

Raw Data

● Raw data is often difficult to 
interpret / separate. 

● Transform data into a 
“feature vector”.

○ Sometimes hand-crafted
○ Often learned



Type of machine learning (non exhaustive)

https://idapgroup.com/blog/types-of-machine-learning-out-there/

https://idapgroup.com/blog/types-of-machine-learning-out-there/


Supervised 
Classification

Visualization of the Perceptron Algorithm

● Labels are known

● Task is to find a decision boundary between data 
points

○ Often this is a hyperplane in a feature space
(which in 2D is a line)

● Often formulated as binary classification. 
○ Some algorithms support multiclass directly
○ Multiple binary classifiers can be converted to 

multi-class classifiers
■ One-vs-Rest O(N) 
■ One-vs-One O(N^2)
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Supervised 
Regression

Visualization of the Linear Regression

● Labels are known

● Task is to fit a curve to predict a (usually continuous) 
quantity.

● Generally used when interpolation between values is 
important.
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Supervised / Unsupervised
● Supervised learning

○ Use input data along “labeled” data
○ Allows you to collect or produce a data output given the information it has learned
○ Usually simple to put in place but harder to collect data
○ Examples include regression and classification

● Unsupervised learning
○ Uses input data only
○ Helps you to finds all kind of unknown patterns in data
○ Usually simple to acquire data but harder to exploit
○ Examples include clustering and association



Deep learning / Classical machine learning
● Deep learning

○ Best-in-class performance
○ Scales effectively with data
○ No need for feature engineering
○ Adaptable and transferable

● Classical machine learning
○ Works better on small data
○ Financially and computationally cheap
○ Easier to interpret



Anatomy of a Deep Network

https://towardsdatascience.com/how-to-initialize-a-neural-network-27564cfb5ffc
https://360digitmg.com/activation-functions-neural-networks

=
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https://360digitmg.com/activation-functions-neural-networks


Deep Networks Learn Good Feature Representations
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Deep network vs traditional network

Traditional Logistic Regression
(Requires good features, learns from few examples)

Deep Network
(Learns good features, requires many examples)



Metrics : Precision and Recall (PR) and ROC Curves
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Metrics : Binary Classification Confusion

False alarm rate = 

real positives real negatives

How many irrelevant items are 
selected?

PPV TPR FPR
15https://en.wikipedia.org/wiki/Confusion_matrix

https://en.wikipedia.org/wiki/Confusion_matrix


Evaluation : Bias / Variance tradeoff

https://www.researchgate.net/figure/Bias-variance-trade-off-in-machine-learning-This-figure-illustrates-the-trade-off_fig2_335604816



Data bias

https://broutonlab.com/blog/ai-bias-solved-with-synthetic-data-generation



Example of classical machine learning in cancer detection
Publication Method Cancer type No of 

patients
Type of data Accuracy Validation 

method
Important 
features

Ayer T et al. [19] ANN Breast cancer 62,219 Mammographic, 
demographic

AUC = 0.965 10-fold cross 
validation

Age, 
mammography 
findings

Waddell M et al. 
[44]

SVM Multiple myeloma 80 SNPs 71% Leave-one-out 
cross validation

snp739514, 
snp521522, 
snp994532

Listgarten J et al. 
[45]

SVM Breast cancer 174 SNPs 69% 20-fold cross 
validation

snpCY11B2 (+) 
4536 T/C 
snpCYP1B1 (+) 
4328 C/G

Stajadinovic et 
al. [46]

BN Colon 
carcinomatosis

53 Clinical, pathologic AUC = 0.71 Cross-validatio
n

Primary tumor 
histology, nodal 
staging, extent of 
peritoneal cancer

https://www.sciencedirect.com/science/article/pii/S2001037014000464

https://www.sciencedirect.com/science/article/pii/S2001037014000464#bb0095
https://www.sciencedirect.com/science/article/pii/S2001037014000464#bb0220
https://www.sciencedirect.com/science/article/pii/S2001037014000464#bb0225
https://www.sciencedirect.com/science/article/pii/S2001037014000464#bb0230


Example : Breast cancer detection

https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.25081

● 36 discrete features
○ Age group, hormone therapy, personal history of 

breast cancer, family history of breast cancer, 
breast density, etc.

● Dedicated model
○ 3 layer feed-forward neural network
○ 36 inputs (features), 1000 hidden layer, 1 output 

(breast cancer probability)

● Radiologist level of results



Deep learning algorithm example
● UNet based aortic stents in single uncontrasted X-ray image 

https://www.sciencedirect.com/science/article/pii/S093938891830120X



Deep learning algorithm example
● Investigations on Robustness of Deep Learning in Limited Angle Tomography

https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2018/Huang18-SIO.pdf



Deep learning algorithm example
● Example of brain and cardiac MRI image registration with Voxelmorph 

https://iopscience.iop.org/article/10.1088/2516-1091/abd37c



How to get started ?



Questions ?


