

La science pour la santé _____ From science to health

Bridging the structural and functional correlates of infant brain development using MRI and EEG

Parvaneh Adibpour Jessica Dubois, Ghislaine Dehaene-Lambertz

NeuroDiderot – INSERM U1141/Neurospin

Neobrain2-Reims 14 June 2021

From brain development to functional acquisitions

Gray matter maturation

White matter maturation adult

Flechsig, 1920

How neuroanatomical changes are translated into behavioral acquisitions?

> Non-invasive neuroimaging of the developing brain *in vivo*

Brain development during infancy

Structural maturation – MRI

Functional maturation – EEG/MEG

Maturation of gray matter

Maturation of white matter pathways – diffusion MRI

Dubois et al., Brain mapping, 2015

Asynchronies in maturation

Response latencies

Nevalainen et *al.*, Front Hum Neuroscience 2014 McCulloch et *al*, Vision Research 1999 Shafer et *al.*, Int J Psychophysiol. 2015

Aim

Structural development diffusion MRI

Functional development EEG

• Evaluating the maturation of brain responses with respect to structural maturation of white matter pathways and cortical gray matter :

□ Regressing out the effect of age

- In white matter: Myelination of neuronal fibers increases the speed of neural information that travel through the neurons
- In gray matter: Increase in synaptic density, myelination of intra-cortical fibers or the changes in intracellular organelle density could affect cortical responses.
- Visual and auditory networks
 - 1. Early responses
 - 2. Inter-hemispheric transfer of the responses

Functional relevance of structural changes

MRI

DTI in the optic radiations

diffusivity

Myelination

Correlations between functional and structural development Anatomical Distances Conduction Speed Latency 0.2 1-4 months 0,15 **Residual speed** 0.1 0.05 -0.05taking into account age effects 0,35 **Residual diffusivity**

Dubois et al., J Neuroscience, 2008

MRI and EEG correlates of visual development

Pathways reconstruction: Tractography

Decrease in transverse diffusivity across development **Optic Radiations** r = - 0.68, p<0.001 1.1 Visual Callosal Fibers r = - 0.72, p<0.001 0 Transverse Diffusivity (10 ⁻³ mm ² .s-⁻¹) 0.9 0.8 N = 220.7 25 10 15 20 Age (weeks) **Myelination**

Adibpour et al., Nature Human Behavior, 2018

Correlations between structural and functional maturation

• 13 infants completed both EEG & MRI experiments

Controlling for age effects

> Variability in the response speeds relates to the maturation of corresponding pathways

Adibpour et al., Nature Human Behavior, 2018

Structure-function relationship across multiple brain networks

MRI and EEG correlates of auditory development

Adibpour et al., Developmental Cognitive Neuroscience, 2020

Response latency differences between typical and AgCC infants

13 infants with Agenesis of corpus callosum AgCC18 Typical infants3-4 months

Auditory evoked responses to monaural noise

Delayed ipsilateral responses in the left (but not right) hemisphere in typical but not AgCC infants.

Involvement of callosal pathways

Left hemisphere (LH) Right hemisphere (RH)

Adibpour et al, Brain Structure and Function, 2018

Correlations between structural and functional maturation

Maturation of auditory white-matter pathways

Age-related changes

Adibpour et al., Developmental Cognitive Neuroscience, 2020

Ipsilateral P2 latency in left hemisphere -

Auditory

Cortical maturation

Growth of dendritic arborization and synaptogenesis

Correlations between structural and functional maturation

Adibpour et al., Developmental Cognitive Neuroscience, 2020

Variability in the response latencies relates to the maturation of Inferior Frontal Gyrus

Imada et al., Neuroreport, 2006; Bristow et al., J Cognitive Neuroscience, 2009

Linking structural and functional maturation

Early interhemispheric transfer of neural activity, supported by microstructural maturation

Functional maturation beyond sensory processing

Perspectives :

Sensori-motor acquisitions in relation with functional response maturation

Crawling

- 5-7 months
- Rest-state recording
- The mu rhythm power specifically correlated to the crawling onset.

> In early developmental period, study of behavioral acquisitions are limited.

Structural maturation

Functional maturation

Perspectives :

Moving towards a finer description of structure-function relationships: Sensory(tactile) response maturation

- Quantifying other functional parameters: e.g. morphology and amplitude of evoked responses
- > Quantifying other microstructural parameters, Brain Plasticity, 2016)

Lebenberg et al, IEEE ISBI 2015, Neuroimage 2019

- Assessing the structure-function relationships within lateralized networks, given the structural and functional asymmetries described in the infant brain.
- Investigating the predictive values of the measures for later outcomes (e.g. language)
 O'Muircheartaigh et al.

(O'Muircheartaigh et al., J Neuroscience, 2013)

Thank you for your attention.

Acknowledgements:

All infants and their parents

Collaborators:

Jessica Dubois, Ghislaine Dehaene-Lambertz, Marie-Laure Moutard Jessica Lebenberg, Claire Kabdebon, Francois Leroy UNIACT-Neurospin team, Giovanna Santoro

Funding resources:

