NeuroSpin

France

www.cea.fr

SHAPE VARIABILITY OF THE CENTRAL SULCUS IN THE DEVELOPING BRAIN: A LONGITUDINAL DESCRIPTIVE AND PREDICTIVE STUDY IN PRETERM INFANTS

NeoBrain 2 Héloïse de Vareilles Jessica Dubois, Denis Rivière, Jean-François Mangin, Manon Benders

NeuroSpin

France

www.cea.fr

- I. Context: why study the developing central sulcus?
- II. Method: how to capture the shape variability of the central sulcus?
- III. Descriptive results: what shape specificities do we observe in the developing central sulcus?
- IV. Predictive results: is the developing central sulcus informative about motor outcome at 5 years?

I. Context: why study the developing central sulcus?

II. Method: how to capture the shape variability of the central sulcus?

III. Descriptive results: what shape specificities do we observe in the developing central sulcus?

IV. Predictive results: is the developing central sulcus informative about motor outcome at 5 years?

- → Unique folding patterns for each individual
- \rightarrow Global resemblance within the kin allowing comparison
- → Macroscopic proxy for brain development
- → Links between cortical folding patterns and functional outcomes

Illustration of the Power Button sign, biomarker for epilepsy [1]

[1] Mellerio et al., Radiolgy, 2015. The Power Button Sign: A Newly Described Central Sulcal Pattern on Surface Rendering MR Images of Type 2 Focal Cortical Dysplasia

Why focus on the central sulcus ?

- $\rightarrow\,$ Simple sulcus, systematic and easy to identify
- → Early development
- → Link with sensorimotor function established through somatotopic maps [1]
- → Shape variability already assessed in the adult [2,3]

Main variability feature in the adult Central Sulcus [3]

[1] Penfield et Rasmussen, 1950. *The cerebral cortex of man; a clinical study of localization of functions.*[2] Sun et al., NeuroImage, 2012. The effect of handedness on the shape of the central sulcus
[3] Mangin et al., Medical Image Analysis, 2016. Spatial normalization of brain images and beyond.

- → Sulci develop mostly during the 3rd trimester of pregnancy
- \rightarrow Longitudinal analyses on fetal MRI are highly complex
- \rightarrow We may capture sulcal specificities of preterm development

Image courtesy of G. Dehaene and J. Dubois. (Au tout départ: le c3rv34u du bébé)

I. Context: why study the developing central sulcus?

II. Method: how to capture the shape variability of the central sulcus?

III. Descriptive results: what shape specificities do we observe in the developing central sulcus?

IV. Predictive results: is the developing central sulcus informative about motor outcome at 5 years?

71 very preterm newborns from Wilhelmina Children's hospital, Utrecht, the Netherlands [1], with a gestational age at birth between 24 and 28 weeks. Age after birth is referred in terms of weeks of post-menstrual age (w PMA)

[1] Kersbergen et al., NeuroImage, 2016. Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants.

Method to quantify the shape variability of the central sulcus

[1] https://brainvisa.info

Method to quantify the shape variability of the central sulcus

[1] https://brainvisa.info

Method to quantify the shape variability of the central sulcus

[1] https://brainvisa.info

 $\rightarrow\,$ The first dimension captures the length and curvature of sulci

Sulcal projection on the Isomap dimension:

30w PMA 40w PMA

 \rightarrow The first dimension captures the length and curvature of sulci

 $\rightarrow\,$ The first dimension captures the length and curvature of sulci

Sulcal projection on the Isomap dimension:

30w PMA 40w PMA

Age-specific moving averages:

<u>Using raw isomap values:</u>

 \rightarrow Description of shape variability in the cohort through visual interpretation

<u>Using isomap values corrected for PMA at acquisition:</u> Each analysis is led independently for age and hemisphere subgroups

- \rightarrow Shape comparison between 30w and 40w PMA
- → Shape comparison between left and right hemispheres

 \rightarrow Motor outcome classification based on shape features (linear Support Vector Classifier (SVC))

- I. Context: why study the developing central sulcus?
- II. Method: how to capture the shape variability of the central sulcus?
- III. Descriptive results: what shape specificities do we observe in the developing central sulcus?
- IV. Predictive results: is the developing central sulcus informative about motor outcome at 5 years?

→ Most of the shape features are consistently encoded between 30w PMA and 40w PMA: 8/10 dimensions show a relevant trend in Spearman correlations (p-val ≤ 0.05)

 \rightarrow The shape feature with the most consistent encoding on both sides captured the height and depth of the hand knob, along with the depth of the second knob

→ One shape feature per age group captured a hemispheric asymmetry, captured with a Wilcoxon signed-rank test.

30w PMA: right central sulci showed a generally lower and deeper hand-knob than left ones

→ One shape feature per age group captured a hemispheric asymmetry, captured with a Wilcoxon signed-rank test.

40w PMA: right central sulci tended towards a single-knob configuration whereas left ones preferred a double-knob configuration.

 \rightarrow The asymmetry captured at 40w PMA resembles that previously observed in the adult [1]

[1] Sun et al., NeuroImage, 2012. The effect of handedness on the shape of the central sulcus.

- I. Context: why study the developing central sulcus?
- II. Method: how to capture the shape variability of the central sulcus?
- III. Descriptive results: what shape specificities do we observe in the developing central sulcus?
- IV. Predictive results: is the developing central sulcus informative about motor outcome at 5 years?

 \rightarrow Hand lateralization tested at 5 years

 \rightarrow Population : right-handers (n=50) vs left-handers with at least one left-handed parent (n=7)

 \rightarrow Method: linear SVC with a stratified shuffled 5-fold cross-validation repeated 10 times trained with:

 \rightarrow clinical factors alone (gestational age at birth, birth weight z-score, presence of intra-ventricular hemorrhage of grade 3 or 4, and presence of broncho-pulmonar dysplasia)

- \rightarrow isomap dimensions alone
- \rightarrow the combination of both

Prediction of hand lateralization : results

 \rightarrow Using **clinical factors alone**, the area under the receiving operator curve (ROC AUC) was 0.59

 \rightarrow The overall best classifier was obtained using **both** clinical factors and isomap dimensions on the right hemisphere at 30w PMA (ROC AUC = 0.64)

 \rightarrow We chose to focus on the best classifier using **isomap dimensions alone**, which was obtained with the **left hemisphere at 30w PMA** (ROC AUC = 0.61)

 \rightarrow On the classifier trained using isomap dimensions alone at 30w PMA, left hemisphere, we retrieved the coefficients assigned to each dimension during the cross-validation

Prediction of hand lateralization : shape analysis

 \rightarrow The 10th dimension, which appeared to be the most informative, captured the length of the hand knob and the orientation of its upper part

 \rightarrow Using mABC-II standardized manual dexterity score tested at 5 years.

 \rightarrow Population: typical fine motor development (n=35) vs poor fine motor development (n=15)

 \rightarrow Method: linear SVC with a stratified shuffled 5-fold cross-validation repeated 10 times trained with:

 \rightarrow clinical factors alone (gestational age at birth, birth weight z-score, presence of intra-ventricular hemorrhage of grade 3 or 4, and presence of broncho-pulmonar dysplasia)

- \rightarrow isomap dimensions alone
- \rightarrow the combination of both

Prediction of fine motor outcome : numerical results

 \rightarrow Using **clinical factors alone**, the area under the receiving operator curve (ROC AUC) was 0.59

→ Two classifiers scored a tie for the best score. Both used isomap factors alone. They were obtained with the left hemisphere at 30w PMA and with the right hemisphere at 40w PMA (ROC AUCs=0.66)

→ We chose to focus on the **right hemisphere at 40w PMA** because its classifier scored a better recall than the other one (recall = 0.61 vs 0.53)

\rightarrow On the classifier trained using isomap dimensions alone at 40w PMA, right hemisphere, dimensions 4 and 10 seemed to be the most informative

Prediction of fine motor outcome : shape analysis

 \rightarrow Once again, the **10th dimension** appeared to be the most informative. It captured the length of the hand knob and the orientation of its upper part

→ Expectation: clinical factors relevant to classify abnormal fine motor outcome, and not lateralization. Reality: the opposite...

→ The 8th dimension captured in preterms seems to match the 1^{st} dimension captured in adults (both in shape and hemispheric asymmetry) \Rightarrow this adult feature is already encoded during early development.

 \rightarrow Relatively **poor scores** obtained on the outcome classifiers: partly because we **prevented from adjusting the regularization parameter** and **from operating feature selection** because of the size and composition of our dataset.

→ Studying preterms longitudinally: convenient way of looking into the development of sulci, but the results obtained may be linked to **a mix of normal and pathological brain development**.

Take home message:

- We described quantitatively the shape variability of the central sulcus in a very preterm cohort at 30 and 40w PMA

- Most of its early shape features are already encoded as soon as 30w PMA

- Hemispheric asymmetries are already present before normal-term-birth

- The shape of the central sulcus shows a limited but existent predictive capacity on both handedness and fine motor outcome

Thank you for your attention!

NeuroSpir

Special thanks to my team and partners Jean-François MANGIN Jessica DUBOIS **Denis RIVIERE Clara FISCHER** François LEROY **Joy SUN** Sara Neumann **Manon BENDERS** Linda DE VRIES **Floris GROENENDAAL** Maria-Luisa Tataranno

heloise.devareilles@cea.fr

cea

Annex : detailed description of the cohort

Characteristics	Mean (range) or N (percentage)
Perinatal clinical characteristics	
Sex, male	36 (51%)
Gestational age at birth (weeks)	26.5 (24.4 – 27.9)
Birth-weight z-score	0.4 (-2.5 – 1.8)
Presence of severe IVH (grade 3 or 4)	8 (11%)
Presence of broncho-pulmonary dysplasia	20 (39%)
Age at MRI scans	
PMA at early acquisition	30.7 (28.7 – 32.7)
PMA at term-equivalent age acquisition	41.2 (40.0 – 42.7)
Fine motor follow-up at 5-years	
Age at fine motor follow-up	5y9m (4y6m – 6y7m)
Manual lateralization	
Handedness (left / ambidextrous / right) (n=70)	18 / 2 / 50
Corrected handedness* (left / right) (n=57)	7 / 50 (12 / 88%)
Fine motor assessment (n=66)	
mABC manual dexterity standardized score	7.7 (3 – 14)
mABC manual dexterity outcome (poor/borderline/good)	15 / 16 / 35 (23 / 24 / 53%)

*Corrected handedness excludes ambidextrous and left-handed children having both parents right-handed

Annex : focus on the Isomap dimensions (1)

configuration and a higher hand-knob

From sulci with deeper and higher hand-knobs on the left to sulci with shallower and lower hand-knobs on the right. Note that the second knob, deep on the left, fades out along the axis.

Annex : focus on the Isomap dimensions (2)

Annex : Classifier scores for handedness

	subgroup	Balanced accuracy	ROC AUC
1) Baseline: clinical factors alone		0.55	0.59
2) Sulcal shape alone	Left hemisphere, 30w PMA	0.57	0.61
	Right hemisphere, 30w PMA	0.38	0.35
	Left hemisphere, 40w PMA	0.44	0.49
	Right hemisphere, 40w PMA	0.43	0.33
 Combination of sulcal shape and clinical factors 	Left hemisphere, 30w PMA	0.53	0.65
	Right hemisphere, 30w PMA	0.64	0.65
	Left hemisphere, 40w PMA	0.48	0.57
	Right hemisphere, 40w PMA	0.43	0.37

Annex : Classifier scores for fine motor outcome

	subgroup	Balanced accuracy	ROC AUC
1) Baseline: clinical factors alone		0.58	0.59
2) Sulcal shape alone	Left hemisphere, 30w PMA	0.62	0.66
	Right hemisphere, 30w PMA	0.45	0.44
	Left hemisphere, 40w PMA	0.40	0.38
	Right hemisphere, 40w PMA	0.62	0.66
3) Combination of sulcal shape and clinical factors	Left hemisphere, 30w PMA	0.59	0.61
	Right hemisphere, 30w PMA	0.48	0.50
	Left hemisphere, 40w PMA	0.46	0.41
	Right hemisphere, 40w PMA	0.57	0.64

Annex : focus on recall

Recall: proportion of elements correctly identified as positive relative to the total number of positives

=> by considering recall, we value the fact of identifying a big proportion of the positive class, even if it means capturing false positives.

Image from the wikipedia page "precision and recall"

Annex : Full statistics tables

	Wilcoxon signed-rank test: t (p-value)			
-	A. Hemispheric comparison		B. Age-group comparison	
-	L30 vs R30	L40 vs R40	L30 vs L40	R30 vs R40
Dimension 1	959 (0.068)	1022 (0.142)	3.0 (3.10 ⁻¹³)	0.0 (2.10 ⁻¹³)
Dimension 2	1044 (0.180)	1276 (0.991)	882.0 (0.023)	774.0 (0.004)
Dimension 3	757 (0.003)	1110 (0.336)	903.0 (0.032)	978.0 (0.086)
Dimension 4	941 (0.053)	1113 (0.344)	627.0 (2 .10 ⁻⁴)	1129.0 (0.393)
Dimension 5	878 (0.022)	1137 (0.419)	606.0 (1.10 ⁻⁴)	686.0 (7.10 ⁻⁴)
D <mark>i</mark> mension 6	1133 (0.406)	1152 (0.470)	1165.0 (0.517)	1178.0 (0.567)
Dimension 7	1169 (0.532)	947 (0.058)	986.0 (0.094)	849.0 (0.014)
Dimension 8	1242 (0.837)	775 (0.004)	804.0 (0.007)	1138.0 (0.422)
Dimension 9	1208 (0.689)	1254 (0.891)	1099.0 (0.305)	1212.0 (0.705)
Dimension 10	1132 (0.403)	881 (0.023)	871.0 (0.020)	1066.0 (0.224)

	Spearman correlation: ρ (p-value)			
2. 2	A. Hemispheric comparison		B. Age-group comparison	
0	L30 vs R30	L40 vs R40	L30 vs L40	R30 vs R40
Dimension 1	0.607 (2.10 ⁻⁸)	0.385 (9.10 ⁻⁴)	0.232 (0.051)	0.428 (2.10-4)
Dimension 2	0.407 (4.10 ⁻⁴)	0.232 (0.051)	0.458 (6.10 ⁻⁵)	0.329 (0.005)
Dimension 3	0.222 (0.063)	0.351 (0.003)	0.307 (0.009)	0.353 (0.003)
Dimension 4	0.254 (0.032)	0.283 (0.017)	0.512 (5.10 ⁻⁶)	0.414 (3.10-4)
Dimension 5	0.411 (3.10 ⁻⁴)	0.327 (0.005)	0.376 (0.001)	0.317 (0.007)
Dimension 6	0.216 (0.070)	0.150 (0.213)	0.284 (0.017)	0.383 (0.001)
Dimension 7	0.188 (0.116)	0.249 (0.036)	0.081 (0.500)	0.191 (0.111)
Dimension 8	0.212 (0.076)	0.186 (0.120)	0.246 (0.039)	0.522 (3.10)
Dimension 9	0.157 (0.190)	0.123 (0.308)	0.294 (0.013)	0.334 (0.004)
Dimension 10	0.158 (0.189)	0.264 (0.026)	-0.024 (0.842)	-0.063 (0.599)

MRI acquisition: 3-Tesla MR system (Achieva, Philips Medical Systems, Best, The Netherlands).

The protocol included T2-weighted imaging with a turbo-spin echo sequence in the coronal plane (at early MRI: repetition time (TR) 10.085 ms; echo time (TE) 120 ms; slice thickness 2 mm, in-plane spatial resolution 0.35 × 0.35 mm; at TEA: TR 4847 ms; TE 150 ms; slice thickness 1.2 mm, in-plane spatial resolution 0.35 × 0.35 mm).

Data preprocessing: after generating a brain mask, T2-weighted images were segmented into three classes between grey matter, unmyelinated white matter and

cerebrospinal fluid using supervised voxel classification. By adapting the BabySeg and Morphologist anatomical pipelines of the BrainVISA software, these segmentations allowed a reconstruction of the inner cortical surfaces of both hemispheres, and the extraction of objects depicting the sulci.

- 1) Compute intrinsic dimensionality d_int of the manifold for each possible number of nearest neighbors k by maximizing the ratio of the reconstruction error a randomly generated distance matrix with the reconstruction error of the input matrix
- 2)Using the couple {k, d_opt}, compute the reconstruction error depending on k
- 3)Look for error drop and check the extent in which the choice of k in this range affects the results
- 4)Select k in this range using the plot of residual variance based on k

5)Choose the most interesting number of dimensions d_opt to observe based on the relative increase of the reconstruction error ratio with increasing dimension

